
Dynamic stability of Time-Delayed Feedback Control System by FFT 

based IHB Method 
 

R. K. MITRA 

Department of Mechanical Engineering 

National Institute of Technology, Durgapur (Deemed University) 

West Bengal, Pin-713209 

INDIA 

rkmitra.me@gmail.com, http://www.nitdgp.ac.in/faculty_details.php?id=122 

 

A. K. BANIK 

Department of Civil Engineering 

National Institute of Technology, Durgapur (Deemed University) 

West Bengal, Pin-713209 

INDIA 

akbanik@gmail.com, http://www.nitdgp.ac.in/faculty_details.php?id=21 

 

S. CHATTERJEE 

Department of Mechanical Engineering 

Bengal Engineering and Science University, Shibpur 

West Bengal, Pin-711103 

INDIA 

shychat@gmail.com, http://www.becs.ac.in/aboutshyamal-chatterjee-mech-menuitem 

 

 
Abstract: -  The forced Duffing oscillator is investigated by intentional time-delayed displacement 

feedback by fast Fourier transform based incremental harmonic balance method along with 

continuation technique (FFT-IHBC). FFT-IHBC can efficiently develop frequency response curves 

with all stable and unstable solutions and solution branches. Appreciable reduction in peak value of 

response and gradual reduction in the skew-ness in frequency response curve is observed with the 

introduction of gain and delay. Further, frequency response curves with all stable solutions can be 

achieved with appropriate choice of gain and delay in the primary and secondary stability zones of 

linear stability analysis. The results obtained by this method are compared with numerical integration 

method and they match perfectly. 

 

Key-Words: - Fast Fourier transform; incremental harmonic balance method; are length continuation; 

intentional time-delayed feedback; Floquet stability. 

 

1 Introduction 

Controlling resonant vibrations of flexible machine 

components and structural members has always 

been an important area of research for engineers. In 

the past various methods analytical, semi-analytical 

and numerical methods were available for 

controlling resonant vibrations. Though active 

vibration control is a superior to passive control 

techniques, presence of unavoidable time delays in 

the feedback circuit seriously limits the performance 

of an active control system and in the worst case the 

system response may even become unbounded. 

Thus, it is extremely difficult to meet the desire 

objectives of vibration control systems under the 

presence of uncontrollable time-delay. The common 

mathematical methods available for the analysis of 

the aforesaid class of systems is the method of 

Multiple Time Scales (MTS) and straight forward 

harmonic balance (HB) analysis. But such methods 

works well only for weakly non-linear systems and 

for time-delays smaller compared to the natural time 

period of vibration of the system.  A comprehensive 

survey of the recent research on the field is available 

in [1]. 

 Olgac et al. [2, 3] have developed an active 

vibration absorber based on linear time-delayed 
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state feedback, which they have termed as the 

delayed resonator. Hu et al. [4] have reported time-

delayed state feedback control of the primary and 

1/3 sub-harmonic resonances of a forced Duffing 

oscillator. Udwadia et al. [5 to 7] have investigated 

the application of time-delayed velocity feedback 

for controlling the vibrations of structural systems 

under seismic loading.  Maccari [8] and Atay [9] 

have studied vibration control of self-excited 

systems. The primary resonance of a cantilever 

beam under the time-delayed feedback control has 

been studied by Maccari [10]. Chatterjee [11] have 

discussed time-delayed feedback control of various 

friction-induced instabilities. Vibration control by 

recursive time-delayed acceleration feedback has 

also been studied by Chatterjee [12]. Ram et al. [13] 

consider the eigenvalue assignment problem for a 

linear vibratory system using state feedback control 

in the presence of time-delay. El-Bassiouny and El-

kholy [14] present analytical and numerical studies 

on the effect of time-delayed feedback of a non-

linear SDOF system under external and parametric 

excitations. 

 As stated earlier, presence of unavoidable 

time delays in the feedback circuit seriously limits 

the performance of an active control system by 

destabilizing it at high control gains.  In order to 

circumvent this undesirable situation, time-delay is 

intentionally introduced in the feedback path where, 

the gain and the time-delay are both controllable. 

Further, literature survey reveals that studies on the 

effect of intentional time-delayed feedback for such 

class of resultant nonlinear system are scarce (to the 

best of the authors’ knowledge and information).  

The present study is therefore motivated by the need 

for a better semi-analytical prediction of complex 

periodic via fast Fourier transform based 

incremental harmonic balance method along with a 

continuation technique (IHB-FFTC). Since the 

system or the feedback control law (which will be 

developed and introduced in the feedback path) is 

strongly non-linear, the efficiency of the method to 

study the response and stability of such system is 

attempted. The stability of the periodic solution is 

examined by Floquet theory. The results show that 

the response curve can be suppressed to the desired 

level with appropriate choice of delay and gain 

parameters. 

 

2 Fast Fourier Transform Based 

Incremental Harmonic Balance 

Method for Time-Delayed Feedback 

Systems 

2.1 Fourier discretization 
Consider the set of non-linear ordinary deferential 

equations for a multi degree of freedom dynamical 

system with time-delay of the following general 

form 

0),,,,,,,()(  tdfxxxxt d                               (1) 

With the periodic conditions 
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In this vector equation, is analytic, x(t) is the 

unknown response of the non-linear system, or in 

general, the dependent variable vector, )(txd is the 

time-delayed function,   is the non-dimensional 

excitation frequency, d is the time-delay, and f is the 

external harmonic excitation amplitude. Over dots 

denote derivatives with respect to the non-

dimensional time t and h is the integer order of the 

sub-harmonic response being considered.  

The first step of the IHB method is the Newton–

Raphson iterative procedure. To obtain a periodic 

solution of Eq. (1) one needs to guess a solution at 

the beginning of the procedure which may be taken 

as the solution of linear system. A neighboring 

solution can be expressed by adding the 

corresponding increments (symbolized by ) to 

them as follows, 

fff
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Thus, the left side variables of Eq. (3) can be 

regarded as the neighbouring states while that on the 

right side as the sum of known states and their 

increments. Substituting Eq. (3) into Eq. (1) one 

obtains the following incremental equation: 
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Now expanding Eq. (4) by Taylor’s series about the 

initial state up to the first order, the linearized 

incremental equations are obtained as, 
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Here )(t is the residue or corrective term which 

will vanish when the solution is exact. Now replace 

F
f

W

D
x

K
x

C
x

M
x d







































   and    

,   ,   ,   ,


               (6) 

With these, Eq. (5) takes the form 
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dxDxKxCxM    

0)(  tfFW                                         (7) 

The terms FWDKCM  and  , ,  , , can in general be 

time (t) varying and are called the equivalent 

incremental mass, damping, stiffness, delay, 

frequency and excitation respectively. Eq. (5) or (7) 

represents a set of linear, second order, variable 

coefficient, ordinary differential equations (ODEs). 

The second step of the IHB method is to expand the 

generalized coordinate x(t) and the corresponding 

increment )(tx into Fourier series for periodic 

response. 
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where i denotes any positive integer and 
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Here, the upper subscript symbol ‘T’ denotes the 

transpose of a matrix. These solutions include all 

harmonics up to a certain order n and have sub-

harmonic order h. From now on it is assumed that 

)(tx  is an approximately known solution and )(tx  

is to be found such that )()( txtx  is a new 

solution. Therefore all functions of time in (6) are 

known for given )(tx and they can be correlated by 

expanding using Fourier series as follows: 
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Now, the Fourier coefficients of these functions can 

be calculated most efficiently by applying FFT (fast 

Fourier transform) algorithm. Considering xd as the 

time-delayed displacement of the form 

)()( dtxtxd  , the Fourier series of dx and 

dx are expressed as: 
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Substituting Eq. (8a), (9) and (10) into Eq. (5), we 

obtain the following linear matrix equation for the 

unknown increment }{ A , 
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Let us define ][][ DKCMJ  as the Jacobian 

(gradient or tangential) matrix with respect to }{ A  

in which the matrices ][M , ][C , ][K  and ][D are 

defined by as 

  ,)(]][[)( xtMt AMY                                 (12a) 
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  ,)(]][[)( xtKt AKY                                   (12c) 

and 
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WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS R. K. Mitra, A. K. Banik, S. Chatterjee

E-ISSN: 2224-3429 294 Issue 4, Volume 8, October 2013



2.2 Evaluation of Jacobian matrix 

The elements of the Jacobian matrix in Eq. (12) are 

effectively calculated using FFT method. Here we 

will evaluate only ][D in detail. The results for ][C , 

][K  and ][M are supplied directly from Leung and 

Chui (1995), [15].The elements of ][D  in terms of 

Fourier components of D (t) are expressed as, 
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From Eq. (12d), 
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where 0D , c
uD  and s

uD are the Fourier coefficients 

of )(tD . 

(i).Equating first the coefficients of 0a on both side 

of Eq. (14), we obtain, 
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(ii) Next, evaluate the coefficient of ja on both 

sides of Eq. (14) for a certain j. 
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Next, we apply Galerkin's method or the harmonic 

balance method to evaluate the Fourier coefficients. 

Multiplying both sides of the above equation by ci 

and si, respectively and integrating over time t from 

zero to h2 and then equate it to zero, we have 
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Use of the following general trigonometric relations 

and orthogonality relations between sine and cosine 

functions are helpful to simplify Eq. (17) and (18). 

Here q and r are zero or integers. 
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Therefore, for the cosine terms we have, 

   






























h

u

u
s
uu

c
u

cc
ij sDcD

D

h

dj
Dh

2

0 1

0

2
cosπ  

dtcc jiji )(
2

1
 








 

   
2

)/sin( 

2

0 1

0

  






















h

u

u
s
uu

c
u sDcD

D
hdj

dtss jiji )(
2

1
 








                                                (20) 

A similar expression can be obtained for sine terms 

and not shown to maintain brevity. Finally, from Eq. 

(17) and (18) we obtain, 
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 (iii) Next we equate the coefficient of
jb on both 

sides of Eq. (14) for a certain j. 

 




























1

0

0

2
 ]       1 [

u

u
s
uu

c
u

ss
ij

cs
ij

s
j

ii sDcD
D

D

D

D

sc   

 



























h

jωω
c

h

jωω
s jj sin cos                          (22a) 

















ss
ij

cs
ij

s
j

ii

D

D

D

sc

0

 ]       1 [  

  j

u

u
s
uu

c
u ssDcD

D

h

dj






















 



1

0

2
cos


 

  j

u

u
s
uu

c
u csDcD

D

h

dj






















 



1

0

2
sin


              (22b) 

Applying the harmonic balance method as above we 

obtain, 
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The elements of ][M  in terms of Fourier 

components of M(t) are expressed as, 

 ][

0

0

0000


















ss
ij

sc
ij

s
i

cs
ij

cc
ij

c
i

s
j

c
j

MMM

MMM

MMM

M ,                                (24) 

where, 

00000  s
i

c
i MMM ,                                       (25a) 

c
j

c
j M

h

j
M 















2

2

0
2

 ,                                           (25b) 

 c
ji

c
ji

cc
ij MM

h

j
M ||2

2

2
   













 ,                          (25c) 

  0for    )sgn(
2

  ||2

2














  iMjiM

h

j
M s

ji
c

ji
sc
ij

,  

                                                                           (25d) 

 M
h

j
M s

j
s

j 














2

2

0
2

  ,                                          (25e) 

 s
ji

s
ji

cs
ij MjiM

h

j
M ||2

2

)sgn(
2

   












 ,            (25f) 

and 

  0for   
2

  
2

2














  iMM

h

j
M c

ji
c

|j-i|
ss
ij

              (25g) 

The elements of ][C  in terms of Fourier 

components of C(t) are expressed as, 
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The elements of ][K  in terms of Fourier 

components of K(t) are expressed as, 


















ss
ij

sc
ij

s
i

cs
ij

cc
ij

c
i

s
j

c
j

KKK

KKK

KKK

0

0

0000

][K                                      (28) 

Where
s
i

s
i

c
i

c
i KKKKKK

2

1
  ,

2

1
  ,

4

1
00000  ,  

c
j0 K

2

1
 c

jK ,   K
2

1
 ||

c
ji

c
ji

cc
ij KK    

  0for     )sgn(K
2

1
 ||

s
ji   iKjiK s

ji
sc
ij , 

 KK s
j

s
j

2

1
 0  ,  s

ji
s

ji
cs
ij KjiKK ||)sgn(

2

1
   , 

and   0for        K
2

1
 c

|j-i|   iKK c
ji

ss
ij  

Next }{W , }{F  and }{Φ  in Eq. (11a) are calculated 

using FFT algorithm and it is solved for the 

unknown coefficient vector A . 

 Finally, the matrix Eq. (11a) is solved at 

each time step using the Newton-Rapson iterative 

process. 

2.3 Path following and parametric 

continuation  
The FFT-IHB method with a variable parameter is 

ideally suited to parametric continuation for 

obtaining the response diagrams of nonlinear 

systems. After obtaining the solution for the 

particular value of a parameter, the solution for a 

new parameter slightly perturbed from the old one 

can be obtained by iterations using the previous 

solution as an approximation. The main aim of the 

path following and parametric continuation is to 

effectively trace the bifurcation sequence as a 

parameter of the system is varied. In this study, an 

arc length procedure
16

 is adopted for the parametric 

continuation. 

 Introducing the path parameter, the 

augmenting equation for a general system can be 

written as: 
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where T],}[{}{ T AX  . A good choice of the 

function }X{g  is {X}X}X
Tg {)(  . Considering the 
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equation is obtained as 
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Together with (11), we obtain the augmented 

incremented incremental equation 
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where ][][ DKCMJ   as before, and ][ XJ is 

the Jacobian matrix which is modified with respect 

to {X}. Considering the portion of the equilibrium 

path of the solution branch, the augmenting equation 

can be written as 

0}{}{)(  cXXX'X
T                             (33) 

The first prediction of the new point {Xn} of the 

solution along the equilibrium path is given in terms 

of the two previous points {Xc}  and {Xcc} as 

follows: 
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where  is an arbitrary step length taken in the 

computation by experience. 

 

 
Fig. 1 A portion of the equilibrium path. 
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2.4 Stability analysis of periodic solutions 

When the steady-state solution for time-delay 

system is computed by using the FFT-IHBC 

method, the stability of the periodic (or almost 

periodic) solution is checked by means of Floquet 

theory for two important reasons. First, stable 

branches can be distinguished from unstable ones 

and bifurcation points can be located by monitoring 

eigenvalues of the monodromy matrix. In this paper 

Floquet theory is modified to analyse the stability of 

the periodic solution of time-delayed displacement 

feedback system. This is done by perturbing the 

state variables about the steady-state solution, which 

results in a system of linearized equations with 

periodically varying coefficients. The perturbed 

equation of motion is always autonomous. When the 

solution is perturbed by }{ x , the incremental linear 

matrix ordinary differential equation is 

0}{}{}{}{  dxDxKxCxM                      (35) 

In state space form Eq. (30) can be written as 
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}]{)([}{ ztz B                                                      (37) 

Where the transition matrix [B] is periodic with tine 

period T, i.e. [B(t)]=[B(t+T )]. The stability of Eq. 

(32) is checked by evaluating the eigenvalues of the 

monodromy matrix [Z], which transforms the state 

vector {zn} at t=nT to {zn+1} at t=(n + 1)T. If the 

absolute magnitudes of the eigenvalues are less than 

unity, the solution is stable. If at least one of the 

eigenvalues has a magnitude greater than one, then 

the periodic solution is unstable. The way the 

eigenvalues leave the unit circle determines the 

nature of bifurcations. The explicit form of [Z] can 

be written as [17], 
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BZ                                        (38) 

where ,/ NTt  and N represents the number of 

divisions used to divide one period T. The efficient 

numerical evaluation  ][Z is achieved by making use 

of the definition of the matrix exponential 
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where [I] is the identity matrix. For small time 

intervals 0t , the series in equation converges 

rapidly, and the value of the matrix exponential can 

be accurately approximated by a finite number of 

terms. 

3. Duffing Oscillator with Time-

Delayed Feedback 

The Duffing oscillator under mono-harmonic 

excitation is analysed with time-delayed 

displacement feedback control. The equation of 

motion of the system is written as, 

dxgtfxxxx  )(32    ,                        (40) 

where x(t) is the non-dimensional displacement 

response as a function of non-dimensional time t. 

Here t is non-dimensionalized with respect to the 

natural time period of the oscillator. Dots denote 

derivatives with respect to t. ω is the non-

dimensional excitation frequency. The forcing 

function is taken as, 

)cos()( tFtf                                                      (41) 

δ and β denote respectively the damping, non-linear 

stiffness  and parameters. xd is the control signal and 

mathematically expressed as 

) ( dtxxd                                                      (42) 

g and d are corresponding gain and delay 

parameters. 

 
Fig. 2 Time-delayed feedback control 

scheme of a SDOF mechanical oscillator. 

 

4. Controlling Linear Vibration 
4.1 Mathematical model 
The non-dimensional equation of motion of the 

above undamped oscillator with the proposed 

control is expressed as 

) ( )(2 dtxgtfxx                                (43) 

The transfer function (TF) of the linear system 

governed by Eq.(38) is given by  

dsgessF

sX
TF

 


1

1

)(

)(
22

                          (44) 

Where s is called complex frequency variable. It 

should be noted that for g=0, Eq.(43) reduces to the 

transfer function of the uncontrolled system. 

 

4.2 Stability analysis 
The stability of the trivial equilibrium of the system 

is ascertained by the roots of the characteristics 

equation given below: 
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0122   dsges                                            (45) 

Substituting js  ( 1j and is any real 

number) in Eq.(45) and separating the imaginary 

and real parts yields, 
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and   0)sin( dg                                           (46b) 

Since g can't be zero, 

0)sin( d                                                        (47) 

The general solution of Eq.(46b) is 
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Substituting Eq.(48) into (46a), yields the following 

equation for the critical stability lines: 
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As the uncontrolled system is marginally stable, 

0g  is also a critical stability line. Finally, the 

stable regions in the g vs. d plane are obtained from 

the sign of the root tendency defined below [12], 
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Fig.3 depicts the region of stability in the g vs. d 

plane. Because the stability region in the lower 

range of delays is of practical importance, this 

region is hence forth called as the primary stability 

zone and the gray shaded regions are called 

secondary stability zones. In subsequent numerical 

explorations, parameter values are chosen from the 

primary as well as secondary stability zones. The 

negative sign of the control gain in the secondary 

stability zone establishes the fact that the control 

system is stable under negative feedback control. 

 
 

Fig. 3 Stability regions under time-delayed 

displacement feedback. Shaded regions are stable. 

Black regions are primary stability zone. Gray 

regions are secondary stability zones. Solid lines 

represent the critical stability lines for different n on 

which some of the characteristic roots are purely 

imaginary. 

5. Numerical Discussions 

The solutions obtained by FFT-IHBC method for a 

Duffing oscillator have been presented and 

compared. Fig. 4 shows the comparison of solutions 

obtained by FFT-IHBC, phase increment (PI) [18] 

and numerical integration (NI) method. The Fourier 

coefficients of damped Duffing oscillator are 

sourced from Leung and Fung (1989) [18]. The 

Fourier coefficients obtained at some specific 

frequencies by PI method is reproduced in Table-1. 

The Fourier coefficients obtained by FFT-IHBC 

method for some frequency are listed in Table-2. It 

should be noted that FFT-IHBC is capable of 

incorporating a large number of Fourier coefficient 

for obtaining more accurate solution if necessary. In 

the table only first six coefficients are given. The 

amplitude versus frequency plot of the forced 

Duffing oscillator by FFT-IHBC, NI and PI methods 

are given in Fig. 4. By PI method the frequency 

amplitude plot for forced Duffing oscillator has 

been obtained in the range of 0.9-1.3 rad/s. The 

frequency response plot for the same oscillator 

using FFT-IHBC and NI methods, in the present 

study, is obtained in the range of 0.03-2 rad/s. It is 

observed from the plot that the FFT-IHBC method 

traces all branches of possible stable and unstable 

solutions. A stable branch initiated at 2 rad/s and 

continues up to an amplitude value of 0.67 m at 

frequency 1.11 rad/s. From this point stable periodic 

solution jumps to a peak response value of 1.94 m 
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through an unstable branch of periodic solution. 

This jump phenomenon is a typical characteristic of 

non-linear system. The amplitude of response then 

reduces sharply and comes down to the amplitude of 

0.101 m at frequency 0.09 rad/s. It is observed that 

the complete resonance curve with stable-unstable-

stable branches is developed efficiently by FFT-

IHBC method. It is seen from the figure that the 

discrete points obtained by PI method in the range 

of 0.9 to 1.3 rad/s matches well with the resonance 

curve obtained by the present methods (FFT-IHBC 

and NI). As stated earlier NI method can’t provide 

unstable solution. Also, in Ref. 3 the frequency 

response curve is developed only for a part of the 

frequency range with no information about the 

stability of the solutions obtained. 

 The forced Duffing oscillator is also 

investigated for vibration control due to different 

values of feedback gain and time-delay by both 

FFT-IHBC and NI methods. Figs. 5 represent 

frequency response diagrams for different values of 

gain and delay in the primary stability zone (Fig. 3). 

Fig. 5a represents frequency response curve of the 

uncontrolled system i.e. g=0 and d=0 s. Figs. 5b to 

5d show the frequency response curves for a 

constant gain of 0.1 and varying delays. It is 

observed that there is a continuous reduction in peak 

value of amplitude as the delay increases. The peak 

response value has been reduced from 2.72 m to 

1.34 m for the said values of gain and delay with 

proportionate reduction of stable and unstable 

branches of solution. It may be observed that due to 

the introduction of gain and delay the frequency 

response curve shifts to the left indicating an 

alternation in the natural frequency of the system 

and in all cases the frequency response curves are 

associated with the jump phenomena. In Fig. 5e, the 

gain value has been increased to 0.25 with a delay 

value of 1.5 s. As a result the peak response 

suppresses appreciably to a value of 0.37 m with all 

stable solutions and the jump phenomenon vanishes 

totally. Next in Figs. 5f to 5i, gain value is fixed at 

0.3 and delay values are gradually increased. Here 

also appreciable reduction in peak response has 

been achieved. The unstable regions are also 

reduced. A farther increase of gain to a value of 0.5 

and a delay of 0.1 in Fig. 5j suppresses the peak 

response a lot to a value of 0.27m with all stable 

branches of solutions.  

 Next, in Fig. 6 the negative gain (-0.25) and 

a high value of delay (4.75s) values are significantly 

selected from the secondary stability region of Fig. 

3. It is seen that this set of gain and delay results in 

response curve with all stable solutions.  

 For all the frequency response curves for 

different gain and delay values, there is a gradual 

reduction in peak value of response and skewness of 

the curves. In case of displacement feedback, 

Selection of gain and delay values from the other 

two regions in the secondary stability zone the 

solutions become unbounded with most unstable 

solutions. So, in case of displacement feedback, 

proper selection of gain and delay in the primary 

and secondary zones can suppress peak response to 

any desire value. 

Table 1. Fourier coefficients obtained by Phase 

Increment method 
ω a1 a2 b1 b2 

0.96912 

1.04923 

1.11679 

1.17505 

1.22318 

1.26041 

1.28625 

1.30049 

1.30314 

1.29440 

1.27479 

1.24525 

1.20758 

1.16525 

1.12572 

1.10783 

0.64457 

0.91154 

1.05044 

1.06224 

0.95929 

0.75999 

0.48801 

0.17105 

-0.16062 

-0.47583 

-0.74426 

-0.93812 

-1.03370 

-1.01278 

-0.86524 

-0.59733 

0.00183 

0.00204 

-0.00819 

-0.01387 

-0.02447 

-0.02885 

-0.02344 

-0.00939 

0.00800 

0.02183 

0.02702 

0.02275 

0.01280 

0 00331 

-0.00118 

-0.00100 

0.17262 

0.42459 

0.73442 

1.06011 

1.36617 

1.62277 

1.80661 

1.90160 

1.89958 

1.80069 

1.61334 

1.35395 

1.04629 

0.72088 

0.41472 

0.17109 

0.00177 

0.00716 

0.01327 

0.01434 

0.00700 

-0.00719 

-0.02260 

-0.03251 

-0.03254 

-0.02284 

-0.40796 

0.00544 

0.01203 

0.01078 

0.00535 

0.00114 

 

Table 2. Fourier coefficients obtained by FFT-IHBC 

method. 
ω a1 a2 a3 b1 b2 b3 

0.17996 0.10313 -0.00010 0.00000 0.00077 -0.00000 0.00000 

0.57695 0.14879 0.00010 0.00000 0.00512 0.00000 0.00000 

0.96825 0.64178 0.00182 0.00000 0.17085 0.00174 0.00000 

1.04894 0.91074 0.00205 -0.00003 0.42347 0.00714 0.00004 

1.05296 0.92190 0.00192 -0.00003 0.43958 0.00751 0.00005 

1.11504 1.04803 -0.00309 -0.00014 0.72518 0.01315 0.00002 

1.17464 1.06245 -0.01379 -0.00019 1.05748 0.01437 -0.00018 

1.22177 0.96425 -0.02420 0.00001 1.35657 0.00738 -0.00038 

1.26045 0.75963 -0.02887 0.00039 1.62295 -0.00722 -0.00029 

1.28563 0.47936 -0.02319 0.00054 1.81094 -0.02304 0.00014 

1.30044 0.15382 -0.00852 0.00024 1.90384 -0.03280 0.00054 

1.30335 -0.00563 -0.00011 0.00000 1.91271 -0.03389 0.00059 

1.29475 -0.46880 0.02161 -0.00050 1.80403 -0.02317 0.00017 

1.27456 -0.74662 0.02704 -0.00037 1.61101 -0.00781 -0.00024 

1.24566 -0.93648 0.02286 -0.00005 1.35708 0.00532 -0.00033 

1.20634 -1.03488 0.01247 0.00014 1.03616 0.01211 -0.00015 

1.16538 -1.01290 0.003326 0.00010 0.72136 0.01079 0.00000 

1.12633 -0.86806 -0.00116 0.00002 0.41854 0.00543 0.00002 

1.10771 -0.58814 -0.00096 -0.00000 0.16545 0.00107 0.00000 

1.12272 -0.42780 -0.00042 -0.00000 0.08547 0.00029 0.00000 

1.22393 -0.20195 -0.00004 -0.00000 0.02016 0.00001 0.00000 

1.43477 -0.09434 -0.00000 -0.00000 0.00512 0.00000 0.00000 

1.63167 -0.06009 -0.00000 -0.00000 0.00236 0.00000 0.00000 

2.21048 -0.02514 -0.00000 -0.00000 0.00056 0.00000 0.00000 
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Fig. 4. Frequency response curves of uncontrolled 

system (δ=0.04, β=0.25, F=0.1, g=0, d=0). 
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Fig. 5. Frequency response diagram for different 

gain (positive) and delay in the secondary stability 

zone ( δ=0.02, β=0.25, F=0.1 

 

 

Fig. 6. Frequency response diagrams for gain 

(negative) and delay in the secondary stability zone 

(δ=0.02, β =0.25, F=0.1) 

6. Conclusions 

 The Duffing oscillator under monoharmonic 

excitation is investigated for desired 

suppression of peak response by intentional 

time-delayed displacement feedback. The 

following conclusions are drawn: 

 The computation of Jacobian matrix and 

hence periodic solution is highly efficient 

and faster in comparison to simple IHB 

method.  

 A large number of harmonics can be 

incorporated in FFT-IHBC, if necessary; 

whereas simple IHB method encounters 

difficulty with large number of harmonics. 

 The solutions obtained by NI matches 

perfectly with stable solutions obtained by 

FFT-IHBC method. 

 FFT-IHBC can conveniently handle any 

type of nonlinearity whereas nonlinearity 

after necessary transformation amenable to 

IHB method can only be handled by simple 

IHB method. 

 The complete frequency response curve 

with all possible stable and unstable 

solution and solution branches can be very 

efficiently developed by FFT-IHBC method 

and jump etc. can be observed. 

 The introduction of gain delay in the forced 

Duffing oscillator results in appreciable 

reduction in the peak value of response. 
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 For g=0.3 and d=0.4 s all solutions become 

stable and jump phenomena is no longer 

observed. 

 It is observed that appropriate selection of 

gain and delay parameters in intentional 

time-delayed feedback significantly changes 

the resonances curves and stability of 

solutions and sometimes in better 

suppression of vibrations. 
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